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SUMMARY

Reward prediction error (RPE) signals are central to
current models of reward-learning. Temporal differ-
ence (TD) learning models posit that these signals
should be modulated by predictions, not only of
magnitude but also timing of reward. Here we show
that BOLD activity in the VTA conforms to such TD
predictions: responses to unexpected rewards are
modulated by a temporal hazard function and activity
between a predictive stimulus and reward is
depressed in proportion to predicted reward. By
contrast, BOLD activity in ventral striatum (VS) does
not reflect a TD RPE, but instead encodes a signal
on the variable relevant for behavior, here timing
but not magnitude of reward. The results have impor-
tant implications for dopaminergic models of cor-
tico-striatal learning and suggest a modification of
the conventional view that VS BOLD necessarily
reflects inputs from dopaminergic VTA neurons
signaling an RPE.
INTRODUCTION

Systems-level neuroscience has progressively advanced from

descriptive approaches toward those that provide a moremech-

anistic understanding of the relationship between neural activity

and behavior. A paradigmatic example is the characterization of

a reward prediction error (RPE) emitted by dopaminergic activity,

which provides the strongest link yet between computational

explanations of behavior and neural data (Schultz et al., 1997).

RPE theory derives from computational accounts of reinforce-

ment learning that specify how an agent comes to learn the

values of different actions and stimuli in a complex environment

(Sutton and Barto, 1998). One such account, temporal difference

(TD) learning, describes how predictive stimuli are associated

with later rewards via the propagation of an error function

through successive states, or time steps. This error function,

the RPE, reports the difference between observed and predicted

rewards at that particular time. Strikingly, recordings from single

dopaminergic neurons in the ventral tegmental area (VTA) and

substantia nigra pars compacta (SNc) report activity that resem-
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bles this precise error function (Schultz et al., 1997; Waelti et al.,

2001). Dopamine neurons signal unpredicted rewards but are

silent when rewards are fully predicted, instead firing at the

occurrence of the earliest predictive stimulus.When an expected

reward is omitted, dopamine neurons depress their activity at

the precise time that this reward should have occurred. Hence,

when stimulus-outcome associations are precise in time, dopa-

minergic activity, like the TD error function, is precise in time

(Hollerman and Schultz, 1998).

By comparison, little is known about dopaminergic activity

when the time between predictive event and resulting reward

is imprecise. When the occurrence of reward is fully predicted,

dopamine neurons show differential firing for equal rewards

occurring at different times (Hollerman and Schultz, 1998; Fiorillo

et al., 2008). A similar dependence of an RPE on the precise time

of reward delivery in the case of unpredicted or partially pre-

dicted rewards would have implications for the role of dopamine

in learning. More specifically, such a signal would be most rele-

vant in situations where the goal is to learn not only how much,

but also precisely when, a reward will ensue.

A temporal dependence for a dopaminergic RPE signal would

also have implications for understanding striatal activity as

measured by BOLD fMRI, where numerous studies report

a correlation between the BOLD signal and RPE in learning

studies (O’Doherty et al., 2003; Tobler et al., 2006; Pessiglione

et al., 2006; Schönberg et al., 2007; Valentin and O’Doherty,

2009). Although it is possible to detect RPE correlates in the

VTA (D’Ardenne et al., 2008), technical limitations imaging this

region have meant that it is consistently easier to test for such

signals in the striatum. Indeed, a large VTA/SNc projection to

the striatum has fostered an implicit assumption that activity

here reflects a dopaminergic input (O’Doherty et al., 2004;

Campbell-Meiklejohn et al., 2010; and many similar examples).

In fMRI studies, it is oftenadvantageous to introducesignificant

temporal jitter between events. Whereas some researchers have

chosen to eschew this advantage in favor ofmaintaining temporal

precision (Schönberg et al., 2010; O’Doherty et al., 2003; Pessi-

glione et al., 2006; Gershman et al., 2009; Krugel et al., 2009),

others have chosen tomaximize BOLD signal sensitivity by intro-

ducing significant randomness (up to 10 s) in the interval between

conditioned stimulus and outcome (Behrens et al., 2007, 2008;

Hare et al., 2008; Cohen et al., 2010; Daniel and Pollmann,

2010). This temporal jitter has in all cases been ignored in the

computation of the prediction error, subsequently found to corre-

late with striatal BOLD signal. Furthermore, even in cases where

mailto:m.klein@ucl.ac.uk
http://dx.doi.org/10.1016/j.neuron.2011.08.024


Figure 1. Classical Conditioning Task Dissociates

Magnitude and Timing of Reward

In each trial, upon the participant’s button press, a condi-

tioned stimulus (CS) appeared on the screen and was,

after a fixed or variable delay, followed by an outcome of

either 40 or 0p (US). In groupU, only 40p outcomes were

shown on the screen, 0p outcomes were unsignaled. In

groupS, both 40p and 0p outcomes were signaled. The

shape of the CS predicted the gain; the color of the CS

indicated whether the US would be presented after a fixed

delay of six seconds, or a variable delay between 3–10 s. In

one out of seven trials (‘‘test trials,’’ not shown), partici-

pants were asked to press a button when they expected

the reward to appear. The accuracy of these timing esti-

mates determined the payment and thus, outcome timings

but not reward was the variable relevant for future

behavior. Behavioral results obtained from test trials are

shown in Figure S1.
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reward timings are fixed, recent observations suggest that the VS

signal codes for a behavioral update as opposed to a value

prediction error (Li and Daw, 2011). Consequently, these data

raise an intriguing possibility that the striatum encodes a signal

that is most relevant to the task at hand, even in situations where

this does not correspond to a reward prediction error.

Here, we used BOLD fMRI to test these ideas while human

subjects performed a classical conditioning experiment where

we introduced two crucial manipulations. First, we compared

a situation in which the time-interval between conditioned stim-

ulus (CS) and unconditioned stimulus (US) was fixed, against

a situation in which this time-interval was drawn randomly from

a learned distribution. Subjects had no influence over the US

(reward/no reward) in either type of trial. Second, we included

instrumental trials where the subject was asked to guess when

the US would be delivered. These were the sole trials where

a subject’s behavior could influence their eventual payment,

but no immediate feedback was given on these trials. Hence,

throughout the experiment the relevant variable for optimizing

behavior was the timing, and not magnitude of the US. To maxi-

mize their accuracy on instrumental trials, subjects had to

covertly track US timings during the classical conditioning trials,

and compare their internal timing predictions with the experi-

enced US timings. The variable relevant for future behavior

was therefore divorced from immediately experienced reward

magnitude.

This allowed us to test two independent predictions. We

hypothesized that the VTA would code for the time-dependent

reward prediction error, as predicted by TD theory. By contrast,

because in our task subjects had to learn when, but not how

much, reward would occur, we hypothesized that striatal

responses would code for timing information, independent of

reward, that is informative in subsequent instrumental trials.

RESULTS

Thirty subjects (17 females, 20–35 years of age, mean age 26.8

years), of which 28 were included in the analysis (see Experi-

mental Procedures), performed a classical conditioning experi-
ment (Figure 1) while undergoing BOLD fMRI. Subjects were

pretrained that three abstract shapes (CS) signaled an outcome

(US) of (a), 40p with 100% chance; (b), 0p with 100% chance; or

(c), an uncertain outcome of either 40 or 0p with a 50:50 chance.

Crucially, the color of the CS indicated whether the US would be

delivered after a fixed or variable CS-US interval. Fixed CS-US

intervals were always 6 s; variable intervals were drawn from

a g distribution with a mean of 6 s and a standard deviation of

1.5 s (range, 3–10 s). Overall 25% of trials were fixed and 75%

of trials were variable. On one trial in seven (randomly inter-

spersed—equally often on fixed and variable timing predicting

trials), subjects were asked to press a button at the time they

expected the outcome to appear. Subject’s accuracy rate at

predicting this time (to within 1 s) was multiplied by the free

reward they received on all other trials in order to determine their

overall final payment. Hence, although positive outcomes were

rewarding, it was only through accurately estimating outcome

delivery time that subjects could themselves exert a degree of

control over their future payment.

Behavior
Subject’s mean time estimate on instrumental test trials was

close to the mean CS-US interval of 6 s (6.03 s ± 0.09 grand

average over all test trials; 5.85 s ± 0.11 in test trials with variable

timing CS; 6.22 s ± 0.09 in test trials with fixed timing CS),

showing that participants had acquired an accurate representa-

tion of outcome timings and exploited themost rewarding policy.

Average timing estimates did not differ significantly from 6 s (p >

0.7 across all test trials).

As expected, in test trials with fixed timing CS, time estimates

were less variable than in trials with variable timing CS (Kolmo-

gorov-Smirnov test: p < 0.001, k = 0.23; see Figure S1 available

online). Furthermore, time estimates were on average shorter in

variable timing compared to fixed timing trials (t27 = 5.27, p <

0.001; Table S1).

VTA Response to Precisely Timed Trials
After careful preprocessing steps to minimize effects of subject

motion and physiological artifacts (see Experimental Procedures
Neuron 72, 654–664, November 17, 2011 ª2011 Elsevier Inc. 655



Figure 2. VTA BOLD Response on Fixed Timing

Trials Encodes a Standard TD Reward Prediction

Error

Red lines relate to the same CS condition and differ only

at US time. The response to the CS is modulated by

expected reward magnitude, the response to the US by

the difference between expected and received reward

magnitude (prediction error). The US was presented at 6 s

(vertical line); shadings indicate SEM. VTA signals were

carefully corrected for motion and physiological artifacts

(Figure S2).
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and Figure S2), we identified a midbrain region in the vicinity of

the VTA using a functional contrast. Our aim here was to test

whether the VTA BOLD response coded for reward prediction

errors in the fixed timing trials, and whether these responses

weremodulated by outcome time in variable timing trials. Conse-

quently, we chose to identify the VTA using a contrast that was

orthogonal to both these effects of interest and in so doing we

avoided a potential selection bias. We contrasted unexpected

rewards against unexpected zero outcomes in the variable

timing trials, averaged across delivery times, in an anatomically

restricted region of interest (ROI) around VTA (see Experimental

Procedures).

Using this ROI, we proceeded to test whether the VTA

response for fixed trials showed the hallmarks of reward predic-

tion error activity. Consistent with the profile seen in dopami-

nergic single unit recordings, we found that the BOLD response

to the CS increased in proportion to the predicted rewardmagni-

tude of the trial (t test on regression slopes: t27 = 1.77; p = 0.05;

pairwise one-tailed comparisons: 0p versus 0/40p: t27 = �2.44,

p = 0.01; 0p versus 40p: t27 = �4.19, p < 0.001; 0/40p versus

40p: t27 = �2.47, p = 0.01), whereas the BOLD response to the

US showed a marked increase for unexpected rewards (t27 =

4.30, p < 0.001,main effect of 40pUS in 50:50 trials), and a differ-

ence between unexpected positive and zero outcomes (one-

tailed t test: 40p versus 0p US in 50:50 trials: t27 = 1.75, p =

0.046; Figure 2).

VTA Response to Variable CS-US Intervals at US Time
Next, we investigated VTA responses to variable CS-US timings.

These should depend on the hazard function, namely, the prob-

ability that a reward will occur at a particular time given that it has

not already occurred. In order to provide a strong test of this

prediction, subjects were divided into two groups. In both

groups, 40p outcomes were signaled at the time of delivery. In

groupS (signaled group), 0p outcomes were also signaled.

Hence, each successive time-step after the CS was more likely

to contain an outcome (and thus a reward) as the subject knew

that the outcome had not yet been delivered. The hazard func-

tion thus increased monotonically through the trial (Figure 3B;
656 Neuron 72, 654–664, November 17, 2011 ª2011 Elsevier Inc.
inverted function shown in green). In groupU (un-

signaled group), 0p outcomes were unsignaled.

In this group, the passage of time initially

increased the chances of imminent reward (as

the peak delivery time approached), and then

decreased these chances as it became increas-
ingly likely that the crucial time had passed, resulting in a hazard

function that was approximately quadratic and peaking at 6 s

(Figure 3B; inverted function shown in red). Because of these

group differences in hazard functions, we predicted different

BOLD responses to an unexpected reward in the two groups

(Figure 3B).

We tested the two hazard functions on the BOLD response to

unexpected rewards (for details regarding the general linear

model [GLM] see Experimental Procedures). Parameter esti-

mates for both hazard functions were extracted from the VTA

ROI. In both groups, VTA data conformed to predictions: the

monotonic hazard function predicted data from groupS (t13 =

2.60, p = 0.022), and the quadratic hazard function predicted

data from groupU (t13 = 4.22, p = 0.001), but not vice versa

(both p > 0.05; Figure 3C). Furthermore, this difference survived

the stringency of a formal between-group comparison (ANOVA

group 3 hazard function, F1,52 = 5.18, p = 0.027). Hence, in

both groups an unexpected reward delivered early leads to

a stronger response than an unexpected reward delivered at

an expected time; however, an unexpected late reward only

leads to a strong response in groupU, where the temporal

hazard function decreases late in the trial. This effect can be

seen in the raw BOLD time courses extracted from the VTA,

plotted separately for short, middle and long CS-US intervals

(Figure S3).

VTA Response to Variable CS-US Intervals at CS Time
Although we found that the BOLD response to the CS increased

in proportion to the expected reward for fixed timing trials, there

was no such effect for variable timing trials. There was a general

increase in BOLD signal in response to variable cue onset (p <

0.001, t27 > 4.0) but this increase did not distinguish between

the three reward conditions (p > 0.3; Figure S3). Overall, effects

of variable timing cues showed a trend toward being smaller than

those of fixed timing cues (t27 = 1.99, p = 0.057, comparing

responses to any fixed timing CS to those evoked by any variable

timing CS), rendering it possible that any effects were too small

for such a scaling to be detectable. We note that some TD theo-

ries of dopaminergic function make the precise prediction that



Figure 3. VTA BOLD Response on Variable Timing

Trials Encodes a Time-Dependent Reward Predic-

tion Error as Predicted by the Temporal Hazard

Function

(A) Regions of interest (ROI) in the ventral tegmental area

(VTA) for groupS (green) and groupU (red) as defined by

a functional contrast between unexpected (50:50) 40 and

0p outcomes in variable timing trials.

(B) The predicted BOLD response for variable timing trials

was derived from a hazard function, i.e., the probability for

a reward to occur at a given time, as predicted by TD

theory. Plot shows inverse hazard functions to illustrate the

predicted BOLD response to a reward on a 50:50 trial. In

groupS all outcomes are signaled; therefore the occur-

rence of a reward becomes more likely over time, resulting

in a predicted decrease of the RPE (shown in green). In

contrast, in groupU where zero outcomes are unsignaled,

the most likely time for a reward to occur is at 6 s. RPE

signals are predicted to be higher when rewards are

delivered earlier or later (shown in red).

(C) Observed VTA BOLD responses in variable timing

trials conformed to TD predictions. Shown are para-

metric fits of the data (mean ± SEM) at different CS-US

intervals. In both groups, an early unexpected reward led

to a stronger response than one delivered at the most

expected time of 6 s, whereas a late unexpected reward

only led to a larger response in groupU. Graphs were obtained by linearly recombining the ‘‘constant,’’ ‘‘linear,’’ and ‘‘quadratic’’ hazard functions (see [B]),

with their effect sizes measured from the BOLD data. Raw time courses are shown in Figure S3.
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the cue effect will be diminished under conditions of variable

timing (Daw et al., 2006).

VS Responses
If, in our task, BOLD signals in VS were simply a reflection of VTA

output, then this signal should also bear the hallmarks of reward

prediction error activity. We therefore first defined a region of

interest in VS exactly as we had for VTA, by contrasting unex-

pected rewards against unexpected zero outcomes in the vari-

able timing trials, averaged across delivery times. Strikingly, in

the entire striatum there was not a single voxel that showed

a significant increase to an unexpected reward across both

groups (Figure S4B). This stood in distinct contrast to the large

overlap of significant regions observed in the midbrain (Fig-

ure S4A) and was already suggestive of fundamental differences

in processing between the two structures, a difference we now

examine in detail.

In defining a VS ROI, we therefore selected voxels that re-

sponded significantly to any fixed timing cue, and intersected

these voxels with an anatomically-defined VS (Figure 4A, see

Experimental Procedures). As was the case in the VTA, this func-

tional contrast was selected to be orthogonal to every test per-

formed in our study, hence eliminating the possibility of selection

bias when performing statistical tests within and between

regions. Note that the results reported below hold for alternative

ROI definitions that are either anatomical or functionally identical

across the two structures (see Supplemental Experimental

Procedures).

VS Response to Precisely Timed Trials
Unlike the VTA, our analysis of ventral striatal BOLD signal re-

vealed significant differences between groups in responses to
fixed timing trials. In groupU, responses to the CS scaled in

proportion to predicted reward magnitude (t test on regression

slopes fitted to the responses to a CS predicting 0p, 0/40p, or

40p: t13 > 5, p < 0.001), but this was not the case in groupS

(p > 0.9). These differences held up when formally comparing

the regression slopes between groups within the striatum (two-

sample t test: t13 = 4.50, p < 0.001), and when comparing

between VTA and striatum ROI (ANOVA ROI 3 group, F1,52 =

5.64, p = 0.021). These effects can be seen graphically in Fig-

ure 4B. Crucially, in groupU, a 40p reward was the only event

that contained information about US timings and consequently

a CS that was predictive of the occurrence of reward was also

predictive of the occurrence of timing information. By contrast,

in groupS, timing information was provided on every trial.

Thus, across the two groups, ventral striatal activity was greatest

to cues that best predicted information about event timing,

whereas VTA activity was greatest to cues that best predicted

greater reward.

At the time of the US, there was no evidence for an RPE signal

in either group (main effect of 40p US in 50:50 trials: p > 0.7;

one-tailed t test 40p versus 0p US in 50:50 trials: p > 0.15; Fig-

ure 4B). Formal comparison with the RPE responses observed

in VTA in fixed timing trials revealed a 2-way interaction (ROI 3

40-versus-0p response: F1,108 = 4.58, p = 0.035). The absence

of an RPE response was likewise observed in a ROI defined in

the dorsal striatum and ventral putamen (see Figures S4F–S4K

and Supplemental Experimental Procedures).

VS Response to Variable Timing Trials
As with the VTA, we next assessed the extent to which ventral

striatal BOLD fluctuations to unexpected rewards depended

upon a group-specific temporal hazard function. However, in
Neuron 72, 654–664, November 17, 2011 ª2011 Elsevier Inc. 657



Figure 4. VS BOLD Response Encodes

Unexpected Information About Timing, Not

Magnitude, of Reward, Inconsistent with

a Reward Prediction Error

(A) Region of interest (ROI) in ventral striatum (VS)

based on the functional response to all fixed timing

cues (see Figures S4A–S4D for details on ROI

definition).

(B) Peri-CS BOLD time courses extracted from the

VS ROI for all trials with fixed CS-US interval (top:

groupU, bottom: groupS). The response to the CS

is modulated by expected reward magnitude in

groupU but not groupS. This suggests that VS

might in fact code for the expected amount of

timing information, the variable relevant for

behavior in this task, which stays constant in

groupS but not groupU. At US time, responses to

unexpected 40p should be significantly larger than

those to unexpected 0p for an area encoding an

RPE (compare Figure 2 for VTA). This is not the

case in VS. Thus, VS responses are not consistent

with an RPE at outcome time.

(C) In contrast to VTA (Figure 3C), the BOLD

response to variable timing trials in VS is not

modulated by either hazard function in either

group; it remains constant over different CS-US

intervals. Raw time courses are shown in Fig-

ure S4E.

(D) BOLD time courses extracted from VS for all

variable timing trials, averaged across all CS-US

intervals and aligned to CS (time 0) and US (vertical

bar; mean = 6 s). A response to unexpected

positive outcomes can be observed in groupU but

not in groupS, which is not consistent with TD

predictions for an RPE signal. As with the

responses observed to the CS (B), this indicates

that VS might respond to unexpected information

about timing rather than reward. (B), (C), and (D) all

denote mean ± SEM.
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the case of the VS, we could also assess the degree to which

unexpected rewards elicited a larger response than unexpected

zero outcomes on average across all variable timing trials. We

could not perform this analysis for the VTA because this very

contrast had been used to define the VTA ROI, and so would

be subject to selection bias. In GroupU, where unexpected

rewards also carry unexpected timing information, unexpected

rewards led to an increase in VS activity (t27 = 3.69, p = 0.001,

response to 40p versus 0p in 50:50 trials; Figure 4D). By contrast

in groupS, where all events carry the same timing information,

there was no difference in the average VS responses between

rewarded and unrewarded variable timing trials (t27 < 1, p >

0.3; Figure 4D). Direct comparison between the effects observed

in the two groups showed larger differences between responses

to 40p versus 0p in groupU compared to groupS (2-way interac-

tion: group 3 40p-versus-0p response: F1,52 = 5.18, p = 0.026).

Again, whereas the VTA responded to unexpected rewards,

the VS responded to unexpected information about event timing.

Furthermore, unlike in VTA, the BOLD signal to unpredictable

rewards in variable timing trials did not conform with the group-

relevant temporal hazard function (Figure 4C and Figure S4E)

(ANOVA group3 hazard function, F1,52 = 1.68, p = 0.28). Formal

comparison with the VTA data revealed a three-way interaction
658 Neuron 72, 654–664, November 17, 2011 ª2011 Elsevier Inc.
(ROI 3 group 3 hazard function, F1,104 = 4.72, p = 0.032). The

absence of an effect of the temporal hazard function was also

true for dorsal striatum and ventral putamen (see Figures S4F–

S4K and Supplemental Experimental Procedures). In summary,

at US time in variable timing trials, the only event that elicited

a significant increase in VS activity was an unexpected reward

in groupU—the only event that revealed unexpected timing

information.

Relating VS Responses to Behavior
To examine whether this response to unexpected timing infor-

mation at US timewas related to subject behavior, we performed

two further analyses on BOLD responses to unexpected rewards

in groupU. We assumed that, in order to perform well on test

trials, subjects would covertly time the outcome in each trial. It

is therefore conceivable that the VS response to the US in clas-

sical conditioning trials might reflect the accuracy of subjects’

internal timing estimates and drive behavioral change.

If the VS signal is monitoring task-performance then trials

where the subject’s prediction is more accurate than expected

should elicit a large BOLD response at US time. By analogy,

unexpectedly successful outcomes lead to high VS BOLD signal

in many tasks. Here, the key measure of success is the subject’s



Figure 5. VS BOLD Response Shows Hallmarks of Subject’s Covert

Timing Behavior

(A) The VS response to a US that is unexpectedly close to the subject’s

average timing prediction from test trials (magenta, accurate) is large

compared to that observed to a US that is distant from the subject’s average

timing prediction (black, inaccurate), analogous to many tasks where unex-

pectedly successful outcomes lead to large VS responses. Shown is the

average BOLD response from variable-timing trials with an unexpected 40p

reward in groupU where magenta shows trials in which subject’s timing esti-

mates were in the most accurate third, and black any other trials. This effect

was not present in VTA, and not present in groupS in either ROI (not shown).

(B) In the same trials, VS responses are large, when behavioral updates

between two test trials are small, consistent with a behavioral update signal

that is informed by the accuracy of subject’s covert timing estimates. Similarly,

in conventional tasks, subjects are likely to reselect the same option following

large VS responses. In (A) and (B), plots show mean ± SEM.
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accuracy in predicting the US time. To test this hypothesis, we

used each subject’s mean timing estimate from instrumental

test trials as an index of his or her internal prediction of outcome

timing. We then examined the classical conditioning trials where

the experienced US timing was closest (1/3 trials) to this internal

US timing prediction (more accurate trials), and compared VS

responses in these trials against those in all other trials (less

accurate trials). As predicted, we found larger responses to

more accurate trials (t13 = 2.76, p = 0.016; Figure 5A). Further-

more, such a signal was not present in the VTA (p = 0.919) and

direct comparison between VTA and VS revealed a trend for an

interaction (ROI 3 accuracy: F1,52 = 3.57, p = 0.064).

Second, if this VS response is a measure of covert timing

performance then, after large VS responses, subjects should

not change their timing estimates on subsequent test trials.

Again, by analogy to more conventional tasks, high VS BOLD

responses are associated with reselecting the same option on

the following trial (Li and Daw, 2011). To test this hypothesis,

we calculated the change in subjects’ timing guesses between

one test trial and the next. We then examined VS responses in

the classical conditioning trials that occurred between these

test trials. Again we examined trials that led to the smallest (1/3

trials) behavioral change (smaller update trials), and compared

VS responses in these trials against those in all other trials (larger

update trials). As expected, we found larger responses to smaller

update trials (t13 = 2.20, p = 0.046; Figure 5B). Again, such a

signal was not present in the VTA (p = 0.22).

Ongoing Negative Prediction Errors While Waiting
for Reward
Our data show that the BOLD signal from the VTA, but not the VS,

is consistent with TD reward prediction errors both to condi-

tioned and unconditioned stimuli. However, in situations with

uncertain reward timing, TD theory also predicts that activity in

the waiting period between CS and US will be depressed by

continual small negative prediction errors, as each successive

time bin fails to deliver a reward. This depression should be

proportional to the predicted reward level and be more

depressed for larger or higher probability predicted rewards.

To examine this hypothesis, we modeled a constant ongoing

negative reward prediction error in the time between CS and US

in our variable timing trials (Figure 6A). In the VTA, parameter esti-

mates were both negative on average (one sample t test: t27 =

�4.4,p<0.001) andexhibiteda trend towardbeingmorenegative

inproportion to theCSrewardprobability (t27=�1.5,p=0.08; Fig-

ure 6B). Neither of these effects held true in the VS (p = 0.23, 0.75).

Formal testing between structures revealed that this ongoing

depression of activity was significantly greater in the VTA than

theVS (twosample t test: t27 =�2.4,p=0.01), andwasmodulated

by the CS reward probability significantly more strongly in VTA

than VS (t27 = �2.2, p = 0.02). Hence activity in the VTA alone,

but not the VS, conformed with predictions from TD theory at

cue time, while waiting for an outcome and at outcome time.

DISCUSSION

Here, we examined the behavioral and neural effects induced

by a task where stimuli were classically conditioned for reward,
but where the key variable for behavior was not the receipt

of reward but its time of occurrence. We show that activity

in the VTA encapsulates RPE predictions derived from TD

models. The measured RPE signal in VTA is modulated

by the expected reward magnitude but also by the probability

of occurrence of a reward at a given time. However, this

does not hold true for the VS. VS does not encode a classic

TD-RPE; instead, it encodes a task-specific signal reflecting

behavioral performance, in the present case, the accuracy of

outcome timing predictions. Our findings have important impli-

cations for the interpretation of previous studies and for the

design of neuroimaging experiments that seek neural correlates

of RPEs.

Both single unit (Schultz et al., 1997; Waelti et al., 2001) and

fMRI (D’Ardenne et al., 2008) activity report dopaminergic

midbrain activity increases to unexpected rewards in a manner

consistent with a TD reward prediction error. However, TD theory

predicts such activity will be modulated by expectations of when

a reward will occur. We formally tested this prediction using
Neuron 72, 654–664, November 17, 2011 ª2011 Elsevier Inc. 659



Figure 6. BOLD Response in VTA, but Not VS, Is Depressed in
Proportion to Predicted Reward While Awaiting a Reward

(A) TD theory predicts continual small negative reward prediction errors (RPE)

in all time bins where a reward is expected but fails to occur. This RPE should

scale with expected reward. Illustrated are themodeled (middle) and expected

(bottom) negative RPEs through the course of a trial (top).

(B) Observed effect sizes in VTA conformed to TD predictions and showed

larger negative ongoing RPEs when greater reward was expected. No such

effect could be observed in VS. Error bars denote SEM.
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BOLD fMRI in conjunction with a conditioning task where the

predictability of a CS-US interval was systematically manipu-

lated. When the CS-US interval was fixed and predictable,

BOLD activity extracted from a midbrain region corresponding

to the anatomical location of the VTA bore all the hallmarks of

a reward prediction error signal. When the CS-US interval was

varied, BOLD activity was greatest for unpredicted rewards,

but this activity was modulated according to a temporal hazard

function—the likelihood that a reward would occur at this

instance given its prior absence—in agreement with predictions

from TD theory (Sutton and Barto, 1998; Daw et al., 2006).

Furthermore, as predicted by TD theory (Daw et al., 2006), we

show a measurable ongoing decrease in BOLD activity in the

same region, when a subject is awaiting the delivery of a reward

whose timing is unpredictable.

Crucially, in our study the temporal dependence of BOLD

activity cannot be attributed to confounding factors such as

waiting costs or temporal discounting of reward. Such argu-

ments might apply to previous studies that have measured the

effect of unknown delays on predicted rewards (Roesch et al.,

2007; Fiorillo et al., 2008). Here, however, we separated subjects

into two groups who encountered identical delays, but different
660 Neuron 72, 654–664, November 17, 2011 ª2011 Elsevier Inc.
hazard functions. As predicted by Fiorillo et al. (2008), we find it is

the temporal hazard function, and not delay costs, that modulate

VTABOLD activity. Notably, BOLD activity in VTAwas consistent

with a reward prediction error signal, even though the relation-

ship between cues and rewards did not determine behavior.

Insofar as fMRI activity measured in putative VTA reports

dopaminergic activity, this finding is of fundamental importance

to learning models. Models that consider dopamine as a general

teaching signal for cortico-striatal learning (Calabresi et al., 2007;

Cohen and Frank, 2009; Reynolds and Wickens, 2002; O’Doh-

erty et al., 2004) should be able to accommodate different

responses for rewards that occur at different times, even if the

timing information is irrelevant to the learning problem at hand.

On initial consideration, the midbrain response we have

measured would be most useful for problems where it is impor-

tant to learn both how much and when reward will ensue.

We report a second set of findings that pertain to the ventral

striatal BOLD signal, and its putative relationship with dopamine.

The existence of a dense dopaminergic projection to ventral

striatum has led to the common assumption that ventral striatal

correlates of reward prediction errors simply reflect activity in

a dopaminergic input (O’Doherty et al., 2004; Campbell-Meikle-

john et al., 2010, and many similar examples). This view is

strengthened by a finding that pharmacological dopamine

manipulations have measurable effects on the expression of

a ventral striatal reward prediction error (Pessiglione et al., 2006).

Here, however, we describe separable and statistically

different patterns of activity between VTA and VS during the

course of the same task. This was possible because our task

entailed a behavior that was independent of predicted and

received reward magnitudes. Subjects were presented with

rewards and reward-conditioned stimuli but, unlike in many

similar experiments, were not asked to judge how much reward

would ensue from each stimulus, or to decide between different

stimuli to maximize their reward. Instead, on occasional test

trials, they were asked to judge when an outcome would occur.

Hence, timing accuracy, not reward, was the variable relevant for

behavioral performance. In order to perform well on test trials,

subjects had to covertly track outcome timing in normal clas-

sical conditioning trials to build an accurate internal timing

representation.

At the conditioned cue, BOLD responses in ventral striatum

across the two groups reflected not the probability of reward,

but rather the probability of timing information being received.

At outcome time, activity was largest when new timing informa-

tion arrived unexpectedly. Furthermore, when such unexpected

timing information was received, activity reflected the accuracy

of the subject’s internal prediction of the event’s timing, and

the need for behavioral update. Unlike the VTA, in both groups,

ventral striatal activity to variably timed outcomes did not reflect

the temporal hazard function of reward, and preparatory activity

in these trials did not reflect ongoing negative prediction error

coding.

Hence, although activity recorded in the putative VTA coded

for a reward prediction error even when it did not determine

behavior, VS activity at CS and US coded the information about

the behaviorally relevant variable—accurate outcome timing

predictions.
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We note that the findings we present here are not inconsis-

tent with the existence of a VS reward prediction error signal,

even a dopaminergic one, in the many situations where

subjects’ aim is indeed to maximize the occurrence and magni-

tude of accumulated rewards (Yacubian et al., 2006; Pessi-

glione et al., 2006; Haruno and Kawato, 2006; Li et al., 2006;

Schönberg et al., 2007; Valentin and O’Doherty, 2009).

However, our findings can explain why VS reward prediction

errors are often not modulated by event-timing, and why they

occur in other learning domains. First, when a task requires

a subject to accumulate rewards, VS responses to reward do

not appear to be modulated by reward delivery time (Gläscher

et al., 2010), consistent with the idea that VS encodes signals

that are relevant for behavior. Second, again consistent with

our data, prediction errors are found to align with the learning

dimension of interest in other learning domains. For example,

when subjects are asked to learn about reward probability

rather than magnitude, ventral striatal activity reflects the

occurrence, not the magnitude, of reward (Behrens et al.,

2008); this is also true when learning about the probability

of aversive events (Seymour et al., 2004; Jensen et al., 2007;

Seymour et al., 2007). When subjects learn to predict a sensory

event, VS encodes a sensory prediction error (den Ouden et al.,

2010), when asked to predict the character or attractiveness of

another individual, VS encodes a violation of social expectan-

cies (Klucharev et al., 2009; Harris and Fiske, 2010). It could

be argued that this information is transformed into an internal

reward (Botvinick et al., 2009), and consistent with that idea,

prediction errors can be seen on subject performance (Brovelli

et al., 2008; Seger et al., 2010). But even if this interpretation

holds in our study, and VS activity is coded in this new ‘‘internal

reward’’ frame of reference, it is notable that VTA activity

reflects TD prediction errors in the original experimental frame

of reference. Thus, a striatal signal that drives behavior coexists

simultaneously with a classical reward-based model-free TD

signal expressed in the VTA.

EXPERIMENTAL PROCEDURES

Participants

Thirty subjects (17 females; 20–35 years of age; mean, 26.8 years) participated

in the fMRI experiment and gave informed consent. Subjects were randomly

assigned to two groups before the start of the experiment. After exclusion of

two subjects (one did not learn the timings crucial for the task as shown in

a postscan questionnaire; one was excluded due to excessive head move-

ments: mean estimated displacement >3 cm), both groups included 14

subjects. The study was approved by the local ethics committee.

Task Design

Three abstract shapes (CS) signaled an outcome (US) of (1), 40p with 100%

chance; (2), 0p with 100% chance; or (3), an uncertain outcome of a 50:50

chance of either 40 or 0p. 40p rewards were always signaled by a visual

cue. In groupU, 0p outcomes were unsignaled, in groupS, they were signaled

by a visual cue. The color of the CS indicated whether the US would appear

after a fixed or variable delay. CS-US intervals were 6 s for fixed timing trials.

For variable timing trials, we sampled intervals from a gamma distribution

with mean m = 6 s and standard deviation s = 1.5. Using the equa-

tions a = m^2/s and b = s/m, it follows that a = 24 and b = 0.25. With these

parameters, the gamma distribution has values close to zero (<0.01) for x <

3 and x > 10. We restricted our discrete sampling to values in the interval

x = [3:10], leading to delays between 3–10 s (Figure 1). Twenty-five percent
of trials had fixed timings, 75% of trials had variable timings in order to obtain

the same number of fixed, early, middle, and late variable trials.

There were two trial types. Normal classical conditioning trials started with

the instruction ‘‘Press button’’ on the screen. Subjects were required to press

a button (maximum allowed reaction time: 1400ms) that brought the CS on the

screen (duration: 1050 ms). After the CS-US interval, the CS was, if applicable,

followed by a US (duration: 480 ms). The intertrial interval was 3–6 s.

The second trial type, instrumental test trials, looked exactly like normal

trials except that the instruction at trial start showed an additional warning

‘‘Bucket trial!’’. This signaled to subjects that no US would be shown on the

screen in this trial, but instead, after CS presentation, subjects would be

required to press a second key at the exact time they most expected the

reward to occur had this been a normal trial. No feedback was given on these

test trials. Subjects were expected to guess the random timing which meant

that the optimal strategy was to guess 6 s regardless of condition. Given the

distribution of timings, this was the most rewarded policy.

Test trials were randomly interspersed with normal trials but did not occur

before the eighth normal trial of each experimental block. On average, there

was one test trial for every six normal trials. At the end of each of the four exper-

imental blocks, participants were informed of the number of successful timing

predictions in test trials, the total amount of money collected, and the resulting

product of the two (corresponding to their payment, see below): ‘‘You caught

a reward in your bucket in x out of a total of 8 bucket trials. Altogether you

collected £y; therefore you won £x/8 * y in this block.’’

In total, eachsubject completed224 trials, 192normal trials, and32 test trials.

Normal trials consistedof 144 trialswith variableCS-US timingand48 trialswith

fixed CS-US timing. This resulted in 36 (12) trials for variable (fixed) timing trials

with 100% 40p, 50:50 40p, 100% 0p, and 50:50 0p outcomes, respectively.

Experimental Procedure

Before entering the scanner, subjects completed a training session consisting

of 60 trials. They were instructed to learn how to associate three CS shapes

with three possible outcomes (40p, 0p, 40/0p), and two colors with either

more or less predictable reward timing. All subjects had learned the associa-

tions successfully after the training as shown in a brief questionnaire. However,

one subject was excluded because he reported nonexistent changes in color-

timing associations after scanning.

The scanning session consisted of four experimental blocks of 48 normal and

8 test trials each. The order of trials was randomized and different in each block.

Subjects were paid according to the number of successful timing estimates

given in test trials. More precisely, the sum of all rewards collected during the

experiment (amounting to £30 if no trials were missed) was multiplied by the

percentage of test trials in which the time they indicated was within 1 s of

the true reward time. On average, subjects earned £15 on the task (min £5,

max £26), and were paid an extra £10 for their participation.

Behavioral Analysis

We carried out t tests and Kolmogorov-Smirnov tests on the timing estimates

subjects gave in instrumental test trials. Comparisons were done both

between and across groups.

FMRI Data Acquisition

We acquired T2*-weighted EPI images on a 3 T TRIO scanner (Siemens) using

a 12-channel head coil. Each of the four blocks consisted of 237 volumes with

43 slices, a 70ms echo time (TE), resulting in a repetition time (TR) of 3.01 s; the

voxel size was 33 33 3 mm, flip angle �30�. We used a sequence optimized

for orbito-frontal and midbrain regions to minimize signal dropout. We also

acquired a high resolution structural scan (1 3 1 3 1 mm; 176 partitions,

FoV = 256 3 240, TE = 2.48 ms, TR = 7.92 ms, FA = 16�, TI = 910 ms, 50%

TI ratio) and a field map (TE1 = 10 ms and TE2 = 12.46 ms, 33 33 2 mm reso-

lution, 1 mm gap). During scanning peripheral measurements of subject pulse,

breathing, and skin conductance responses were made together with scanner

slice synchronization pulses.

FMRI Data Preprocessing

FMRI analysis was implemented using FMRIB Software Library (FSL) (Smith

et al., 2004). Data were preprocessed using the default options in FSL: Images
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were motion corrected (Jenkinson et al., 2002) and unwarped using the

acquired field maps. Brain matter was segmented from nonbrain (Smith,

2002) before applying Gaussian spatial smoothing with a 5 mm FWHM kernel.

Images were high-pass filtered and registered to the high-resolution structural

image (7 degrees of freedom) and then the standard MNI152 template using

affine registration (12 degrees of freedom) (Jenkinson and Smith, 2001).

Maximizing Sensitivity in the Midbrain

Further to using a sequence thatminimized signal drop-out inmidbrain regions,

we performed two steps to increase the sensitivity to BOLD responses in the

midbrain. These steps were taken because the anatomical location of the

VTA makes BOLD signals in the region exquisitely sensitive to both physiolog-

ical noise and subject motion. First, we applied conservative independent

component analysis (ICA) using MELODIC to identify and remove obvious

motion and physiological artifacts (Beckmann and Smith, 2004). Because

VTA is especially susceptible to physiological noise, its signal variance was

greatly reduced following the removal of noise components (Figure S2A).

Second, a physiological noisemodel was constructed using an in-house devel-

opedMATLAB toolbox (Hutton et al., 2011). Models for cardiac and respiratory

phase and their aliased harmonics were based on RETROICOR (Glover et al.,

2000). The model for changes in respiratory volume was based on (Birn et al.,

2006). This resulted in 17 regressors, separate ones for each slice: 10 for

cardiac phase, 6 for respiratory phase, and 1 for respiratory volume.We gener-

ated these 17 regressors oncewith respect to every slice (n = 43 slices) tomaxi-

mize their sensitivity for different slice acquisition times. Tomatch the voxelwise

input format requiredbyFSL, eachof the17 regressorswas formattedasa four-

dimensional volume with identical regressors for voxels within the same slice,

but different regressors across voxels of different slices. This resulted in 17

regressors with the following dimensions: 64 (voxels in x) 3 64 (voxels in y) 3

43 (slices) 3 234 (volumes), importantly differing only in the ‘‘slice’’ and

‘‘volume’’ dimensions. Regressors were included in the general linear model

(GLM) that led to a further reduction of the signal variance in VTA (Figure S2B).

fMRI Data Analysis

Temporal difference models predict different patterns of dopaminergic

activity in the two groups. For creating the regressors to include in the GLM,

we used a hazard function, reflecting the probability that a reward will occur

at time t given that it has not yet occurred

rPðtÞdt
ð1� rÞ+ r

�
1� Rt

0

PðtÞdt
�;

where P is a g distribution with amean of 6 and a standard deviation of 1.5 from

which the CS-US intervals were drawn (Figure 1). We varied the parameter r to

be r = 0.5 to predict the situation when only half of the outcomes were shown

(groupU), and r = 1 for when all outcomes were shown (groupS). This led to the

predictions shown in Figure 3A. In groupU, where the most likely time for

a reward delivery is the mean delivery time, the BOLD RPE response is pre-

dicted to be large for early and late, but smaller for midtime unexpected

rewards. In groupS, it becomes more likely as time passes that each new

time bin will contain a reward. The RPE signal is therefore expected to be

largest for early, and smallest for late unexpected rewards.

The GLM included 47 regressors in groupS and 39 regressors in groupU. In

both groups there were six regressors for CS type lasting for the duration of CS

presentation of 1 s [timing (fixed/variable) 3 expected value (40/20/0p)], eight

regressors for positive (40p) outcomes [4 for certainty (100%/50%)3 fixed/vari-

able; 4 for certainty (100%/50%)3monotonic/quadratic hazard functions], also

modeledwith a duration of 1 s, two regressors for the time of CS and response in

test trials, again both lasting 1 s, and finally, six regressors produced during

realignment formotioncorrection,and17 four-dimensional regressors toaccount

for physiological noise. In groupS, the corresponding eight regressors for zero

outcomes [4 for certainty (100%/50%) 3 fixed/variable; 4 for certainty (100%/

50%)3monotonic/quadratic hazard functions] were additionally included.

In a second GLM that was otherwise identical, we added six additional

regressors modeling a prolonged negative RPE [timing (fixed/variable) 3

expected value (40/20/0p)], starting 2.5 s after the CS, and ending at the

US time or, if no US was presented, 10 s after the CS.
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Group analysis was performed using a random effects general linear model

(Beckmann et al., 2003; Woolrich et al., 2004).

ROI Definition and Time Course Extraction

AROI in the VTAwas defined in each group from a contrast comparing variable

timing trials with unexpected (50:50) 40 and 0p outcomes, i.e., a contrast

with ‘‘+1’’ in the column of the design matrix for unexpected positive and

‘‘�1’’ in the column for unexpected zero outcomes in variable timing trials

with uncertain outcome for groupS, and a contrast with just +1 in the column

for unexpected positive outcomes in variable timing trials with uncertain

outcome for groupU. The ROI included voxels within an anatomically defined

region around VTA (coordinates: x:�8 to +6, y:�26 to�14, z:�20 to�12) that

reached significance at Z > 2.4 for that contrast in the whole-brain voxelwise

analysis.

The VS was defined according to the same procedure but based on the

functional response to all CS signaling fixed outcome timing, i.e., a contrast

with +1 in the three columns of the design matrix for cues signaling fixed timing

(0, unsure, or positive). The VS ROI was restricted to an anatomically defined

VS region (coordinates: x: 6 to 18 and �18 to �6, y: 6 to 16, z: �12 to �2). We

used the overlap of ROI from both groups in further analyses. All analyses were

repeated for two anatomical VS ROIs. A ROI including voxels in the right and

left accumbens structures of the Harvard Subcortical Structures Atlas

(including probabilities >0.5), and a 5 3 5 3 5 voxel ROI centered at a previ-

ously used peak location of (x,y,z) = ±10, 8,�4 (Cools et al., 2002). All statistical

tests performed on VS held true for data extracted from these two anatomical

ROIs, showing that results did not depend on the exact ROI definition (see

Supplemental Experimental Procedures).

BOLD time series for VTAandVSROIwere extracted for each subject by pro-

jecting the groupROI back into subject space using the inversewarp field. Time

courses were extracted from the preprocessed and ICA-corrected data. The

obtained signal was then divided into each trial and resampledwith a resolution

of 300ms,with theCSpresentationoccurringat 0 s. TocalculateaverageBOLD

time courses for corresponding trial types, each trial’s signal was aligned at the

time of CS and US (denoted by vertical lines in the figures), without changing

actual timings. When averaging signals separately for trials with short, middle,

and longCS-US intervals, the first and last quarter of all time courseswere clas-

sified as ‘‘early’’ and ‘‘late.’’ This resulted in borders at�5 s and�7 s for theCS-

US interval. For plots of the average BOLD signal, only data points falling in the

duration of the mean interval of all averaged time courses were included.

Statistical Analyses and Figures

We performed t tests and ANOVAs on the parameter estimates obtained from

the first-level analyses for the VTA and VS ROI and the effects of interest (e.g.,

responses to CS and responses to the parametric regressors reflecting the

predictions from the hazard functions). To test for an effect of expected

reward, slopes were fitted to the estimates of 0p, 20p, and 40p-predicting

cues. Similarly in the second GLM, the effect of waiting time was tested by

fitting a slope to the estimates from the corresponding 0p, 20p, and 40p

regressors. The t tests on slopes were one-tailed as a higher response was ex-

pected for higher expected rewards; all other t tests were two-tailed unless

indicated otherwise. Where statistical tests involved comparisons against

trials in which no event occurred (groupU, no reward trials), group compari-

sons were performed on the mean time courses as in Behrens et al. (2008).

For the plots comparing predictions from the hazard functions with obtained

BOLD responses, parameter estimates of the three resulting contrasts

(constant RPE, linear hazard function, quadratic hazard function), multiplied

by their parametric modulator, were linearly combined, to obtain the effect

size of the RPE across different CS-US intervals (Figure 3C and Figure 4C).

Note that these plots do not depict raw BOLD time courses. Peri-CS raw

BOLD time courses are depicted elsewhere (Figures S3 and S4E), separately

for short, middle, and long CS-US intervals and different CS conditions.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

Supplemental References, four figures, and one table and can be found with

this article online at doi:10.1016/j.neuron.2011.08.024.
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